AJ&K BOARD HSSC-I MODEL QUESTION PAPER (MATHEMATICS)

SECTION - A (Marks 20)

Time allowed: 25 Minutes

(OBJECTIVE)

		cle the correct option i.			arries (one mark.			
1	Con	plex number $\frac{5+2l}{4-3l}$, in the	ne form		_			-	
	A	$\frac{-7}{25} + \frac{26}{25}i$	В	$\frac{5}{4} + \frac{2}{3}l$	C	$\frac{14}{25} + \frac{23}{25}i$	D	$\frac{26}{7} + \frac{23}{7}i$	
2	Wha	t is the conjugate of (1	$(+i)^3$						
	A	-2 + 2i	В	-2 - 2 <i>i</i>	C	2 + 2 <i>i</i>	D	2 – 2 <i>i</i>	
3	If de	t(A) = 5, then det (15 A) wher	e A is of order 2 x 2					
	A	225	В	75	C	375	D	1125	
4	What is the row rank of a matrix $\begin{bmatrix} 1 & 3 & 5 \\ 4 & 5 & 5 \\ 1 & 2 & 2 \end{bmatrix}$								
	A	0	В	1	C	2	D	3	
5	If $\underline{a} = 3\hat{\imath} - 5\hat{\jmath}$ and $\underline{b} = -2\hat{\imath} + 3\hat{\jmath}$, then the value of $\underline{a} + 2\underline{b}$ is equal to								
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
6	What is the angle between two non-zero vectors \underline{a} and \underline{b} , if $ \underline{a} \times \underline{b} = 5$ and $\underline{a} \cdot \underline{b} = 5\sqrt{3}$								
	A	30°	В	45°	C	60°	D	90°	
7	The	nth term of the sequenc	$\frac{1}{2}$	$\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, is:					
	A	_1	В	$\frac{n+1}{n+1}$	C	n	D	$\frac{n}{2n+1}$	
8	If the	$\frac{n+1}{n+1}$ enth term of an A.P is	1 n + 1	then the common dif	ference	n+1		211+1	
-	A	3	В	5	С	4	D	6	
9									
<u> </u>	The	nth term of the arithme	ilco-g		1 - 1	8 16 32 ······ 2 ⁿ⁻¹		$n2^{n-1}$	
			В	n2 ⁿ⁺¹	C	\overline{n}	D	nz	
10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	A	$\frac{75}{2}$	В	$\frac{75}{81}$	C	$\frac{75}{71}$	D	$\frac{75}{6!}$	
11	If S = { 1, 2, 3, 4, 5, 6 } be the sample space of rolling a die. What is the probability of rolling a number less								
11	than	one	т т	1	Г			1	
	A	0	В	6	C	1	D	<u>-</u> 3	
12	Whic	h of the following is a c	orrect o	ption for the validity	of (3	$-5x)^{\frac{-1}{2}}$			
	Α	x < 5	В	$ x < \frac{5}{2}$	C	5x < 1	D	$ x < \frac{3}{5}$	
13	If f(x	$x^3 - 2$, then f^{-1} (3)	R) is ear	al to				3	
13	A	7	В	3√7	C	³√ 5	D	5√3	
	Which of the following is a point in the feasible region determined by the linear inequalities								
14	$2x + \frac{1}{2}$	$3y \le 6$ and $3x - 2y \le$	16?						
Security Profession	A	(4,3)	В	(3,-2)	C	(-2,4)	D	(3, -4)	
15	If sin	$\theta = \frac{5}{13}$ and terminal ra	y of θ i		hen co			12	
	A	$-\frac{12}{13}$	В	$\frac{12}{13}$	C	$\frac{13}{12}$	D	$-\frac{13}{12}$	
16	cos 5	0° 50′ cos 9° 10′ – sin	50° 50			- Change and a second			
	A	0	В	$\frac{1}{2}$	С	1	D	$\frac{\sqrt{3}}{2}$	
17	Which	of the following repre	sents (s						
771111				$\frac{\Delta}{\Delta}$	C	Δ	D	Δ	
- 10	A	$\frac{\Delta}{a^3}$	В	ac		<u>bc</u>		abc	
18		In triangle ABC (with usual notation) if $\alpha = \sqrt{3}$, $b = 3$ and $\beta = 60^{\circ}$, then value of α is:							
10	A	30°	В	45°	C	60°	D	75°	
19	Find	the period of $5 \tan \frac{1}{2} x$	is:		Annual Section	inches de la Caración	T	5π	
	A	2π	В	π	C	5π	D	$\frac{5\pi}{2}$	
20	sin [$\cos^{-1}(-\frac{\sqrt{3}}{2})$ is equal t	0				1 1 1 1 1 1		
	A	$\sqrt{3}$	В	1	C	1	D	1_	
			D	$\overline{\sqrt{2}}$	C	$-{2}$	וע	<u> </u>	

AJ&K BOARD HSSC-I

MODEL QUESTION PAPER (MATHEMATICS)

(SUBJECTIVE PART)

Time allowed: 2:35 hours

Total Marks Section B and C: 80

SECTION - B (Marks 48)

Q2. Attempt any TWELEVE parts. All parts carry equal marks. $(12 \times 4 = 48)$

i. If
$$z_1 = 2 - i$$
 and $z_2 = 1 + i$, then evaluate $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right|$.

ii. Show that $\overline{z} = -z$ if and only if z is pure imaginary.

iii. Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1+c \end{vmatrix} = abc(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$$

iv. Find a unit vector perpendicular to both $\underline{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\underline{b} = -2\hat{i} + \hat{j} - 3\hat{k}$.

v. The arithmetic mean of two numbers is 8, and the harmonic mean is 6. What are the numbers?

vi. Sum the series $3.1^2 + 5.2^2 + 7.3^2 + ...$ to n terms.

vii. Find n and r if ${}^{n}P_{r}=840$ and ${}^{n}C_{r}=35$.

viii. Three unbiased coins are tossed. What is the probability of obtaining at least one head?

ix. Using Principal of Mathematical Induction, prove that:

$$1+2+2^2+2^3+\ldots+2^{n-1}=2^n-1.$$

x. Find the domain and range of $f^{-1}(x)$ if $f(x) = \frac{x-4}{x-3}$.

xi. Graph the system of linear inequalities

$$2x+y\geq 4 \qquad ; \quad x+y\geq 3 \quad \ ; \quad x\geq 0$$

xii. Show that $sin(\alpha + \beta) sin(\alpha - \beta) = cos^2 \beta - cos^2 \alpha$.

xiii. Find area of a triangle ABC (with usual notations) if:

(a)
$$b = 40, \alpha = 50^{\circ}, \gamma = 60^{\circ}$$

(b)
$$a = 11, b = 9.0, c = 8.0$$

xiv. In triangle ABC (with usual notations), prove that: $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r_3}$

xv. Verify that:
$$2 \tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(-\frac{1}{7} \right) = \frac{\pi}{4}$$

xvi. Find the solution set of $\sin x \cos x = \frac{\sqrt{3}}{4}$

SECTION - C (Marks 32)

NOTE: Attempt any FOUR questions. All questions carry equal marks. $(4 \times 8 = 32)$

Q3. Solve the following system of non-homogeneous linear equations using GAUSS JORDAN method.

$$x + y + z = 4$$
 ; $2x - 3y + z = 2$; $-x + 2y - z = -1$

- Q4. (a) Show that the sum of the first n positive odd integers is n^2 .
 - (b) If $y = \frac{x}{3} + \frac{x^2}{3^2} + \frac{x^3}{3^3} + \dots$, where 0 < x < 3, then show that $= \frac{3y}{1+y}$.
- Q5. If $2y = \frac{1}{2^2} + \frac{1 \cdot 3}{2!} \cdot \frac{1}{2^4} + \frac{1 \cdot 3 \cdot 5}{3!} \cdot \frac{1}{2^6} + \dots$ then prove that $4y^2 + 4y 1 = 0$
- Q6. Find the maximum and minimum values of the function Z = 7 x + 21 y subject to the constraints:

$$2x + y \ge 2$$
 ; $2x + 3y \le 6$; $x + 2y \le 8$; $x \ge 0$; $y \ge 0$

- Q7. Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- Q8. Prove that $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$

NOTE: SLO based questions are taken from chapters 02, 07 and 11.