Mathematics

Model Paper

Marks: 20

Paper: Part II

Intermediate

Time: 30 Minutes

Section-A

Note: Each Question has four possible options. Tick (\checkmark) the correct option.

(20x1=20)

1	lin	$n_{x\to 0}\left(\frac{e^x-1}{x}\right) =$									
	A	0	В	00	С	1	D	-1			
2	$\lim_{x \to 0} \left(\frac{\sin ax}{\sin bx} \right) =$										
	A	$\frac{a}{b}$	В	$\frac{b}{a}$	С	$\frac{1}{ab}$	D	ab			
3	Which of the following represent $f^{-1}(5)$ if $f(x) = x^{\frac{1}{3}} + 2$										
	A	1	В	3	С	9	D	27			
4	$if y = \cos(ax + b) then y_2 =?$										
	A	$-a \sin(ax+b)$	В	$-a^2 \cos(ax+b)$	С	$a^3 \sin(ax+b)$	D	$-a^2 \sin(ax+b)$			
5	A d	ifferentiable function f	(x) ha	as relative maxima at	c if						
	A	f''(c) = 0	В	f''(c) > 0	С	f''(c) < 0	D	f''(c) = 1			
6	If y	If $y = \sin^{-1} \frac{x}{a}$, then y_1 is									
	A	$(a^2 + x^2)^{1/2}$	В	$(a^2-x^2)^{-1/2}$	С	$(a^2 + x^2)^{-1/2}$	D	$(a^2 - x^2)^{1/2}$			
7	∫ ta	an x dx =									
	A	$\ln \cos x + c$	В	$-\ln \sin x + c$	С	$\ln \sec x + c$	D	$\ln \sin x + c$			
8	A particle is moving in a straight line and its acceleration is $a = 2t - 7$, then its velocity v is:										
	A	2	В	-5	С	$t^2 - 7 + c$	D	$t^2 - 7t + c$			
9	∫ e	$x\left[\frac{1}{x} + \ln x\right] dx =$					٠				
	A	$\frac{e^x}{x} + c$	В	$e^x \ln x + c$	С	$\frac{e^x}{\ln x} + c$	D	$xe^x + c$			
10	$\int \frac{x}{x+1}$	$\frac{d}{dx} dx =$		'		***					
	A	$x - \ln(x+2) + c$	В	$\ln(x+2)+c$	С	$\frac{1}{2}\ln(x+2) + c$	D	$x - 2\ln(x+2) + c$			
11	The	The location in the plane of the point $P(x, y)$ for which $y = 0$ is									
	A	First Quadrant	В	Second Quadrant	С	X-axis	D	Y-axis			

1										
12	The equation of line through $(8, -3)$ having slope 0 is									
	A	y - 3 = 0	В	y + 3 = 0	C	x - 3 = 0	D	x + 3 = 0		
13	The pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ are real and coincident if									
	A	$h^2 = ab$	В	$h^2 < ab$	C	$h^2 > ab$	D	$h^2 + ab = 0$		
14	The inequality $2x - 3y \le 6$ has a solution									
	A	(4, 2)	В	(2, -3)	С	(0, -3)	D	(4,0)		
15	The equation $x^2 + y^2 + 4x + 12y + 15 = 0$, represents									
	A	Circle	В	Parabola	С	Ellipse	D	Hyperbola		
16	The directix of the parabola $x^2 = -16y$, is									
	A	x + 4 = 0	В	x - 4 = 0	С	y + 4 = 0	D	y - 4 = 0		
17	In an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the length of Latusrectum is									
	A	$\frac{2a}{b^2}$	В	$\frac{2b^2}{a}$	С	$\frac{2b}{a^2}$	D	$\frac{2b^2}{a^2}$		
8	Which of the following triples can be direction angles of a single vector									
	A	45°, 45°, 60°	В	30°, 45°, 60°	C	45°, 60°, 60°	D	30°, 45°, 90°		
19	The projection of $\hat{i} + \hat{j}$ along \hat{k} is									
	A	1	В	0	C	$^{1}/_{\sqrt{2}}$	D	$^{-1}/_{\sqrt{2}}$		
20	The value of $2\hat{\imath} \times 2\hat{\jmath}$. \hat{k} is									
.0										

Mathematics

Paper: Part II

Model Paper

Intermediate

Marks: 80

Time: 2.30 HOURS

Section-B

Note: Attempt twelve (12) short questions.

Q. 1 Write short answers of any eight parts.

(12x4=48)

(i) If
$$f(x) = \frac{1}{\sqrt{x-1}}$$
 and $g(x) = (x^2 + 1)^2$ find (a) $f \circ f(x)$ (b) $g \circ f(x)$

- (ii) evaluate $\lim_{\theta \to 0} \frac{1 \cos p\theta}{1 \cos q\theta}$
- (iii) Differentiate $\frac{\left(1+\sqrt{x}\left(x-x^{\frac{3}{2}}\right)\right)}{\sqrt{x}}$ w.r.t x
- (iv) If $y = \tan \left[2 \tan^{-1} \frac{x}{2} \right]$ then find $\frac{dy}{dx}$.
- (v) Show that $2^{x+h} = 2^x \left\{ 1 + (\ln 2)h + \frac{(\ln 2)^2 h^2}{2!} + \frac{(\ln 2)^3 h^3}{3!} + \dots \right\}$
- (vi) Solve the differential Equation $y x \frac{dy}{dx} = 2(y^2 + \frac{dy}{dx})$.
- (vii) Evaluate the integral $\int \frac{dx}{\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x}$
- (viii) Evaluate the integral $\int_{-1}^{5} |x 3| dx$
- (ix) The point A (-1, 2), B (6,3), C (2,-4) are vertices of a triangle. Show that the line joining the mid-point D of AB and the midpoint E of AC is parallel to BC and DE = $\frac{1}{2}$ BC.
- (x) Find the distance of point p (6, -1) to the line 6x 4y + 9 = 0.
- (xi) Graph the feasible regions subjects to following constraints $2x-3y \le 6$, $2x+y \ge 2$, $x \ge 0$, $y \ge 0$. (
- (xii) Find equation of circle passing through the A(3, -1), B(0,1) and having a centre at 4x-3y-3=0.
- (xiii) find equation of parabola having focus (-3, 1) and directrix x=3.
- (xiv) find equation of ellipse having focus (0, 3), centre (0,0) and vertex at (0,4).
- (xv) Find constant α so that $\vec{v} = 3i + \alpha j + 4k$ and $\vec{w} = 4i + 5j + \alpha k$ are perpendicular.
- (xvi) Find volume of tetrahedron whose vertices are are A (-2, 1, 4), B (3, 2, 5), C (-3, -5, 0), D (5, 8, 9)

Note: Attempt any four questions from this section.

(4x8=32)

Q. 3 Find values of m and n if given function is continuous at x=3, also state domain and range of function

taking m=1 and n=2
$$f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$$

- Q. 4 From ab-initio method, find derivative $\frac{1}{(ax+b)^n}$
- Q. 5 Evaluate the integral $\int \frac{2x^2-1}{x^4+x^2+1} dx$.
- Q. 6 (a) Find the coordinates of the vertices of triangle formed by the lines x 2y 6 = 0, 3x y + 3 = 0; 2x + y 4 = 0
- (b) Also find measure of angles of triangle.
- Q. 7 A farmer plans to mix two types of food to make a low cost feed for animals. A bag of food P cost him Rs. 40 and contains 5 units of proteins and 4 units of vitamins. A bag of food Q cost him Rs. 50 and contains 4 units of proteins and 8 units of vitamins. How many bags of food P and Q should be consumed in order to have 120 units of proteins and 144 units of vitamins at minimum costs?
- Q.8 By rotation of axes, eliminate the xy-term in the equation $9x^2+12xy+4y^2+2x-3y=0$. Identify the conics and find its elements.