

FEDERAL BOARD OF INTERMEDIATE AND SECONDARY EDUCATION H-8/4, ISLAMABAD

No.1-2/FBISE/RES/599

18 July, 2024

NOTIFICATION

In continuation to this office Notifications No.1-2/FBISE/RES/CC/391 dated 21 June 2023 the Model Question Paper for the subject of Mathematics at HSSC-II level as per Curriculum 2006 alongwith Table of Specifications (TOS) and Alignment Chart is prepared for the Annual Examinations 2025 only and uploaded on the weblink https://www.fbise.edu.pk/curriculum_model_paper.php. It is pertinent to mention here that with effect from Annual Examinations 2026 and onwards Paper of Mathematics HSSC-II will be assessed as per Curriculum 2022-23.

(SYED ZULFIQAR SHAH)
Deputy Secretary

(Research & Academics) Ph:051-9269539

Heads of all Institutions affiliated with FBISE at HSSC level

Copy to:

- Director General, Federal Directorate of Education, G-9/4, Islamabad
- 2. Director General, FGEI (C&G) Directorate, Sir Syed Road, Rawalpindi Cantt
- 3. Assistant Chief of the Air Staff (Education), PAF Air Headquarters, Peshawar
- 4. Director Education, Directorate of Naval Educational Services, Naval HQ, Islamabad
- Deputy Director General (DDG), Army Public Schools and Colleges System Secretariat, Sectt Block, Army Central Library, Tameez Ud Din Road, GHQ, Rawalpindi
- 6. Director, CB Education Directorate, C/o Chaklala Cantonment Board, Rawalpindi
- 7. Director (Education), Fauji Foundation Head Office, Welfare Division, Chaklala, Rawalpindi
- 8. Director General, OPF Head Office Building, Shahrah-e-Jamhuriat, Sector G-5/2, Islamabad
- 9. Director Education, Kahuta Research Laboratory (KRL), Kahuta, District Rawalpindi
- 10. Director (Education), Gilgit-Baltistan
- 11. Director Education, 210-WAPDA, Wapda House Lahore
- Mr. Muhammad Ashraf Hiraj, Principal, Startwell Education House No.9, Main Khayban-e-Tanveer Chaklala Scheme-III, Rawalpindi Cantt
- Mrs. Sakina Fowad Bukhari, Principal, City Lyceum School House No.394 St.No.4, Gulraiz-3 near Madina Mall, High Court Road, Rawalpindi
- 14. The Director, Punjab Group of Colleges, 6th Road, Rawalpindi
- The Director Regional Office (North), Beaconhouse Regional Office (North), Capital View Road, Mohra Nur, Banigala Islamabad
- The Director Regional Office (North), The City School, Street 7, National Police Foundation, Sector E-11/4, Islamabad
- 17. Roots International Schools and Colleges, Head Office, Main Service Road West, Opp. G-13/4, Islamabad
- Brig Dr. Muhammad Hanif (R) SI (M), Principal, Dr A Q Khan College of Science & Technology, Bahria Town, Phase 8, Islamabad
- 19. All HODs, FBISE, Islamabad
- 20. Director IT (with the request to upload the same on FBISE website and social media)
- 21. Deputy Controller of Exams (Strong Room)
- 22. Incharge, FBISE, Sub-Office, Gilgit
- 23. Incharge, FBISE Sub-Office, Skardu
- 24. PA to Chairman, FBISE, Islamabad
- 25. APS to Secretary, FBISE, Islamabad
- 26. APS to Director (R&A), FBISE
- 27. Chat Room, FBISE, Islamabad

Federal Board HSSC-II Examination Model Question Paper Mathematics

(Curriculum 2006)

	<u> </u>	RC	LL N	UMB	ER		,	Versio	on No.	,
Section - A (Marks 20)										
Section 11 (1/14/185 20)	0	0	0	0	0	0	0	0	0	0
Time Allowed: 25 minutes	$\overline{(1)}$	$\overline{(1)}$	(1)	(1)	$\overline{(1)}$	$\overline{1}$	(1)	$\overline{(1)}$	$\overline{(1)}$	(1)
Time Allowed. 23 minutes	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)
C4: A : All	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)
Section – A is compulsory. All	\odot	\simeq	\odot							
parts of this section are to be	(4)	(4)	(4)	4	(4)	(4)	(4)	(4)	(4)	(4)
answered on this page and	(5)	5	(5)	(5)	(5)	5	(5)	(5)	(5)	(5)
handed over to the Centre	6	6	6	6	6	6	6	6	6	6
Superintendent.	$\overline{(7)}$									
Deleting/overwriting is not	(8)	(8)	(<u>8</u>)	(<u>8</u>)	(8)	(8)	(<u>8</u>)	(8)	(8)	(8)
allowed. Do not use lead pencil.	(9)	9	(9)	(9)	9	9	<u>(9)</u>	(9)	<u>(9)</u>	(9)

Invigilator Sign.

Q1. Fill the relevant bubble against each question. Each part carries one mark.

Candidate Sign. ____

Sr no.	Question	A	В	C	D	A	В	C	D
i.	Which one of the following commands is used to draw a graph?	limit	iscont	det	plots	0	0	0	0
ii.	The range of the function $f(x) = x - 5 $ is:	(-∞,0]	[0,+∞)	[5,+∞)	[-5,+∞)	0	0	0	0
iii.	What limit given in the following results $\frac{\sin(1-x)}{(1-x)} = 1?$	$x \rightarrow -1$	$x \to 0$	$x \to 1$	$\chi \to \infty$	0	0	0	0
iv.	What is the derivative of $log_5 e^x w.r.t.x$?	$\frac{1}{xlog5}$	$\frac{1}{xln5}$	$x \log_5 e$	xlne	0	0	0	0
v.	What is the value of $\sqrt{1 - x^2} \frac{dy}{dx} (\sin^{-1} x + \cos^{-1} x) ?$	2	0	$\sqrt{1-x^2}$	$\frac{1}{x}$	0	0	0	0
vi.	Which of the following represents $(y_2 + y)$, if $y = cosx$?	-у	0	у	2 <i>y</i>	0	0	0	0
vii.	If $\vec{F}(t) = (t+5)\underline{i} + (2t^3)\underline{j} - (3t)\underline{k}$, then what is the evaluated value of $\lim_{t \to -2} \vec{F}(t)$?	3 <u>i</u> + 8 <u>j</u> - 6 <u>k</u>	3 <u>i</u> – 16 <u>j</u> – 6 <u>k</u>	3 <u>i</u> – 16 <u>j</u> + 6 <u>k</u>	7 <u>i</u> + 16 <u>j</u> + 6 <u>k</u>	0	0	0	0
viii.	For a velocity vector $\vec{v} = cos(t)\underline{i} - 2sin(t)\underline{j} + 3\underline{k}$, the acceleration vector \vec{a} is:	sin(t) <u>i</u> + 2cos(t) <u>j</u> + 3 <u>k</u>	sin(t) <u>i</u> - 2cos(t) <u>j</u> + 3 <u>k</u>	$-sin(t)\underline{i} + 2cos(t)\underline{j}$	-sin(t) <u>i</u> - 2cos(t) <u>j</u>	0	0	0	0
ix.	For what value of k , the integral $\int_{1}^{k} x^{n-1} dx = \frac{1}{n}$ $?; n \in \mathbb{Z}$	$\sqrt[n]{\frac{2}{n}}$	$\sqrt[n]{2}$	2^n	$\sqrt[n]{\frac{2n-1}{n}}$	0	0	0	0

x.	What is the evaluated value of $\int_0^{2\pi} Sinx \ dx$?	-2	0	2	4	0	0	0	0
xi.	For what values of x , the distance between the points $(7,1)$ and $(3,x)$ is 5 ?	4, -2	-4,2	4, 2	-4, -2	0	0	0	0
xii.	The three lines defined by the equations x + 2y = 0, 2x + y = 0, 3x + 5y = 0 are:	sides of a triangle	Perpendicul ar	concurrent	parallel	0	0	0	0
xiii.	Which one of the following is an equation of a circle with center $(3, -7)$ and goes through a point $(1, 1)$?	$(x + 3)^{2} + (y - 7)^{2} = 52$	$(x - 3)^2 + (y + 7)^2 = 68$	$(x - 3)^2 + (y + 7)^2 = 32$	$(x + 3)^{2} + (y - 7)^{2} = 40$	0	0	0	0
xiv.	What is the length of tangent drawn from an external point $(-1,2)$ to the circle $2x^2 + 2y^2 - 4x + 8y = 0$?	17	$\sqrt{3}$	5	√5	0	0	0	0
xv.	Which one of the following represents a parabola with focus (5,0) and vertex (0,0)?	$x^2 = 20y$	$x^2 = -20y$	$y^2 = -20x$	$y^2 = 20x$	0	0	0	0
xvi.	Equations of the asymptotes of a hyperbola $\frac{x^2}{7^2} - \frac{y^2}{4^2} = 1$ are:	$y = \pm \frac{4}{7}$	$y = \pm \frac{7}{4}$	$x = \pm \frac{4}{7}$	$x = \pm \frac{7}{4}$	0	0	0	0
xvii.	What is the order and degree of the differential equation $\frac{d^3y}{dx^3}$ - $\sin^{-1}\left(\frac{d^2y}{dx^2}\right) = x^4e^x$?	3,4	3,2	3,1	3, not defined	0	0	0	0
xviii.	What is the solution of the differential equation $xdy - ydx = 0$?	y = cx	$y = ce^x$	x - y = c	xy = c	0	0	0	0
xix.	The MAPLE command to solve equation $3x^2 + 4x - 3 = 0$ is:	Simpson $(3x^2 + 4x - 3 = 0)$	$f solve (3x^2 + 4x - 3 = 0)$	solve $(3x^2 + 4x - 3 = 0)$	Psolve $(3x^2 + 4x - 3 = 0)$	0	0	0	0
XX.	If $f(0) = 1$, $f(1) = 2.72$ then, what is the approximated value of $\int_0^1 f(x)dx$ by using the trapezoidal rule?	1.86	1.88	1.87	1.72	0	0	0	0

Federal Board HSSC-II Examination Model Question Paper Mathematics

(Curriculum 2006)

Time allowed: 2.35 hours Total Marks: 80

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the **E-sheet**. Write your answers on the allotted/given spaces.

SECTION – B (Marks 48)

 $(12 \times 4 = 48)$

Q.2	Question	Marks		Question				
i.	For an implicit function $x^2 + y^2 = 4$ a) Write 'Maple' command for	4		Find the equation of the following straight lines.				
	plotting graph			a) Parallel to x – axis and at a distance				
	b) Plot graph manually.		OR	of 5 units below it.				
	c) Write down domain and range.			b) Perpendicular to $y - axis$ and				
				passing through the point (6,4).				
ii.	Find the area under the graph of	4		Determine the equation of the tangent	4			
	$f(x) = x^3 - x$ over the interval $[-1, 1]$		OR	to the curve defined by				
				$y = 2x^2 - 7x + 1$ at $x = 2$.				
iii.	Prove that	4		Test the continuity of the function	4			
	$f(x, y) = x^3 - 3xy^2 + 5x^2y + 7y^3$		OP	$f(x) = \begin{cases} 1 - 3x, & x < -6 \\ 7, & x = -6 \\ x^3, & x > -6 \end{cases} at x = -6$				
	is a homogeneous equation of degree 3		OK	$f(x) = \begin{cases} 7, & x = -6 \\ x^3 & x > 6 \end{cases}$				
	and verify Euler's Theorem for f .							
iv.	Solve the differential equation	4		Evaluate $\lim_{x\to 0} \frac{(1+x)^{-2}-1}{x}$ and	4			
	$\frac{dy}{dx} = 1 - xy + y - x.$		OR	write its maple command.				
				-				
V.	Compute four iterates of the bisection	4		Determine the 4 th derivative of	4			
	method for the function		OR	$f(z) = 9\sin\left(\frac{z}{3}\right) + \cos(1 - 2z)$				
	$f(x) = 2e^{-x} - 5 = 0$ for [0, 1].		011	(3/				
vi.	For what value of k , line	4		Convert the equation $x^2 + 4y^2 +$	4			
	x - y + k = 0 will touch the circle			2x - 24y + 33 = 0 in standard form.				
	$x^2 + y^2 = 81$. Also find tangent to the		OR	Find the coordinates of the center,				
	circle.			vertices, co-vertices and foci.				
vii.	(a) By differentiating $x^2 - y^2 = 1$	4		A person on a hang glider is spiraling	4			
	implicitly, show that $\frac{dy}{dx} = \frac{x}{y}$			upward due to rapidly rising air on a				
	i i		OR	path having position vector				
	(b) Show that $\left(\frac{dy}{du}\right)_{u=0} = 0$,			$\vec{r}(t) = (3cost)\underline{i} + (3sint)\underline{j} + (t^2)\underline{k}.$				
	if $y = 3\sin 2x$ and $x = u^2 + \pi$			Find velocity and acceleration vectors.				
viii.	Find values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the	4		Find the derivative of	4			
	function		$OR \sin^{-1}\left(\frac{2x}{1+x^2}\right) w.r.t. \tan^{-1} x.$					
	$f(x,y) = \sqrt{y^2 - \ln(9y + 3x^2)}$							
ix.	Evaluate $\int \frac{dx}{x^2-1}$	4		If $\vec{F}(t) = e^t \tan(t) \underline{i} - \sqrt{\pi} \sec(t) \underline{j} +$	4			
			OR	$2t\underline{k}$, then				
				(a) Evaluate $\vec{F}(0)$, $\vec{F}(\frac{\pi}{2})$ and $\vec{F}(\frac{2\pi}{3})$				
<u> </u>		<u> </u>		(2) (3)				

				(b) State domain of the function \vec{F} .	
х.	Find partial derivatives f_x and f_y of the	4		Find all the points on curve	4
	function $f(x, y) = x^2 e^{xy} + ln(x + y)$		OR	$y = 2x^3 + 4x^2$ where tangent line is	
				parallel to the line $y = 8x - 4$.	
xi.	Find whether $f(x) = (x^4 - 4x + 2)^5$	4		Evaluate $\int xe^{-x}dx$	4
	shows relative maximum, relative		OR		
	minimum or neither at critical value		OK		
	x = 1.				
xii.	1	4		Anwar is driving a car with uniform	4
	method to approximate the actual root			speed $x + xt$, find:	
	r = 0.438447 of the non-linear equation		OR	(i) Distance as a function of 't'	
	$f(x) = x^2 - 5x + 2$ with initial start		UN	(ii) Constant when $x(0) = 2$	
	$x_o = 0.4$ that must be accurate to six				
	decimal places.				

SECTION – C (Marks 32)

Note: Attempt all questions. Marks of each question are given.

Q. No.	Question	Marks		Question	Marks
Q3	 A curve has an equation y = ½x³ - 9x¹¹.⁵ + 8/x + 30, x > 0 (a) Find dy/dx (b) Show that a point (4, -8) lies on the curve defined. (c) Find equations of the tangent and normal at (4, -8) giving your answer in the form ax + by + c = 0 ∀a, b, c ∈ R 	8	OR	If $\vec{F}(t) = \underline{i} + 2e^{2t}\underline{j} + t^3\underline{k}$ and $\vec{G}(t) = 3t^2\underline{i} + 5e^{-t}\underline{j} - t3\underline{k}$ are the vector functions then evaluate a) $\frac{d}{dt}(\vec{F} \times \vec{G})(t)$ b) $\frac{d\vec{F}}{dt} \times \vec{G}$ c) $\vec{F} \times \frac{d\vec{G}}{dt}$ and verify d) $\frac{d}{dt}(\vec{F} \times \vec{G})(t) = \frac{d\vec{F}}{dt} \times \vec{G} + \vec{F} \times \frac{d\vec{G}}{dt}$	8
Q4	 (a) A(5,1), B(3,-5) and C(-3,7) are the vertices of triangle ABC. Find equations of medians of triangle ABC. (b) Show that medians of triangle ABC are concurrent. 	8	OR	 (a) If A(-2,5), B(1,5) are end points of chord AB of circle x² + y² + x - 5y - 2 = 0, then show that line drawn from the center of circle is perpendicular to chord AB, and bisects chord AB. (b) Coordinates of end points of two chords are P(0,2), Q(-2,0) and R(0,-2), S(2,0). Show that the two chords PQ and RS are equidistant from the center of circle x² + y² = 4. 	8
Q5	Evaluate $\int (\theta^4 + \pi)e^{3\theta}d\theta$	8	OR	Solve the differential equation $y^2 dx + (xy + x^2) dy = 0$	8
Q6	If $u = \sec^{-1} \left[\frac{x - y}{\frac{3}{x^4 + y^4}} \right]^{\frac{1}{7}}$, then Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{28} \cot u$	8	OR	Approximate the definite integral $I = \int_0^1 \sqrt{1 - x^2} dx$ for $n = 4$ subintervals by using Simpson's Rule and then compare your approximate answer with the actual value of the definite integral.	8

Federal Board HSSC-II Examination

Mathematics Model Question Paper (Curriculum 2006)

Alignment of Questions with Student Learning Outcomes

OBJECTIVE PART SECTION A

Q. No. (Part no.)	Content Area/ Domain	Student Learning Outcomes	Cognitive Level *	Allocated Marks
Q1(i)	Domain: Algebra	[1.1]: (ii) Recognize basic MAPLE commands	K	1
Q1(ii)	Domain: Algebra	[2.1]: (ii) Draw the graph of modulus function $(y = x)$ and identify its domain and range.	U	1
Q1(iii)	Domain: Algebra	[2.7]: (ii) Evaluate limits of different algebraic, exponential and trigonometric functions.	U	1
Q1(iv)	Domain: Algebra	[3.6]: (ii) Find the derivative of $\ln x$ and $\log_a x$ from first principles.	U	1
Q1(v)	Domain: Algebra	[3.5]: Inverse trigonometric functions (arcsin x, arccos x, arctan x, arccscx, arcsecx and arccotx) using differentiation formulae.	K	1
Q1(vi)	Domain: Algebra	[4.1]: (i) Find higher order derivatives of algebraic, trigonometric, exponential and logarithmic functions.	U	1
Q1(vii)	Domain: Algebra	[5.2]: (i) The limit of the sum (difference) of two vector functions is the sum (difference) of their limits. The limit of the product of a scalar function and a vector function is the product of their limits	K	1
Q1(viii)	Domain: Geometry	[5.4]: (ii) Apply vector differentiation to calculate velocity and acceleration of a position vector $\vec{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$.	A	1
Q1(ix)	Domain: Algebra	[6.6]: (iii) Extend techniques of integration using properties to evaluate definite integrals.	U	1
Q1(x)	Domain: Algebra	[6.6]: (v) Apply definite integrals to calculate area under the curve.	A	1
Q1(xi)	Domain: Geometry	[7.1]: (i) Recall distance formula to calculate distance between two points given in Cartesian plane.	К	1
Q1(xii)	Domain: Geometry	[7.7]: (i) Find the condition of concurrency of three straight lines.	U	1
Q1(xiii)	Domain: Geometry	[8.2]: (i) Define circle and derive its equation in standard form i.e. $(x - h)^2 + (y - k)^2 = r^2$	U	1
Q1(xiv)	Domain: Geometry	[8.3]: (v) Find the length of tangent to a circle from a given external point.	K	1
Q1(xv)	Domain: Geometry	[9.1]: (iv) Find the equation of a parabola with the following given elements:focus and vertex,	U	1

Q1(xvi)	Domain: Geometry	[9.3]: (iv) Convert a given equation to the standard form of equation of a hyperbola, find its elements and sketch the graph.	U	1
Q1(xvii)	Domain: Algebra	[10.1]: Define ordinary differential equation (DE), order of a DE, degree of a DE, solution of a DE.	K	1
Q1(xviii)	Domain: Algebra	[10.3]: (i) Solve differential equations of first order and first degree of the form:	U	1
Q1(xix)	Domain: Algebra	[12.1]: (iv) Use MAPLE command <i>f solve</i> to find numerical solution of an equation and demonstrate through examples.	U	1
Q1(xx)	Domain: Algebra	[12.2]: (ii) Use MAPLE command <i>trapezoid</i> for trapezoidal rule and <i>simpson</i> for Simpson's rule.	A	1

SUBJECTIVE PART SECTION B & C

Q. No. (Part no.)	Content Area/ Domain	Description of Student Learning Outcomes	Cogni tive Level	OR	Content Area/ Domain	Description of Student Learning Outcomes	Cognit ive Level	Allocat ed Marks
Q2(i)	Domain: Algebra	[1.3]: (i) Plot a two-dimensional graph.	U	OR	Domain : Geomet ry	[7.3]: Find the equation of a straight line parallel to • y - axis and at a distance a from it, • x - axis and at a distance b from it.	U	4
Q2(ii)	Domain: Algebra	[6.6]: (v) Apply definite integrals to calculate area under the curve.	A	OR	Domain : Geomet ry	[9.1]: (vii) Find the equation of a tangent and a normal to a parabola at a point	U	4
Q2(iii)	Domain: Algebra	[11.2]: (iii) Verify Euler's theorem for homogeneous functions of different degrees (simple cases).	U	OR	Domain : Algebra	[2.8]: (iii) Test continuity and discontinuity of a function at a point and in an interval.	U	4
Q2(iv)	Domain: Algebra	[10.3]: (i) Solve differential equations of first order and first degree of the form: • separable variables	К	OR	Domain : Algebra	[2.7]: (i) Evaluate the limits of functions of the following type $\frac{(1+x)^n-1}{x}$ when $x \to 0$	U	4
Q2(v)	Domain: Algebra	[12.1]: (iii) Calculate real roots of a non-linear equation in one variable by	A	OR	Domain : Algebra	[4.1]: (i) Find higher order derivatives of algebraic, trigonometric,	K	4

		bisection method				exponential and logarithmic functions.		
Q2(vi)	Domain: Geometr y	[8.3]: (ii) Find the condition when a line touches the circle.	U	OR	Domain : Geomet ry	[9.2]: (v) Convert a given equation to the standard form of equation of an ellipse, find its elements and draw the graph.	K	4
Q2(vii)	Domain: Algebra	[3.4]: (iv) Find derivative of implicit function. Prove that $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \text{ when } y = f(u) \text{ and } u = g(x).$	U	OR	Domain : Geomet ry	[5.4]: (ii) Apply vector differentiation to calculate velocity and acceleration of a position vector $\vec{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$	A	4
Q2(viii)	Domain: Algebra	[11.1]: (iii) Find partial derivatives of a function of two variables.	K	OR	Domain : Algebra	[3.4]: (i) Prove that $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ when y = f(u) and u = g(x)	U	4
Q2(ix)	Domain: Algebra	[6.5]: Use partial fractions to find $\int \frac{f(x)}{g(x)} dx$, where $f(x)$ and $g(x)$ are algebraic functions such that $g(x) \neq 0$.	U	OR	Domain : Geomet ry	[5.1]: (i) Define scalar and vector function. ii) Explain domain and range of a vector function.	U	4
Q2(x)	Domain: Algebra	[11.1]: (iii) Find partial derivatives of a function of two variables.	K	OR	Domain : Geomet ry	[8.3]: (ii) Find the condition when a line touches the circle.	K	4
Q2(xi)	Domain: Algebra	[4.4]: (iii) Examine a given function for extreme values.	U	OR	Domain : Algebra	[6.4]: (iii) Evaluate integrals using integration by parts.	U	4
Q2(xii)	Domain: Algebra	[12.1]: (iii) Calculate real roots of a non-linear equation in one variable by Newton-Raphson method.	U	OR	Domain : Algebra	[10.3] (ii) Solve real life problems related to differential equations.	A	4
Q3	Domain: Geometr y	[4.3]: (ii) Find the equation of tangent and normal to the curve at a given point.	K	OR	Domain : Geomet ry	[5.4]: (ii) Apply vector differentiation to calculate velocity and acceleration of a position vector $\vec{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$.	A	8

Q4	Domain: Geometr y	[7.7]: (ii) Find the equation of median, altitude and right bisector of a triangle.	U	OR	Domain : Geomet ry	[8.4]: Prove analytically the following properties of a circle. Perpendicular from the center of a circle on a chord bisects the chord.	A	8
Q5	Domain: Algebra	[6.4]: (iii) Evaluate integrals using integration by parts.	U	OR	Domain : Algebra	[10.3]: (i) Solve differential equations of first order and first degree of the form: • homogeneous equations	K	8
Q6	Domain: Algebra	[11.2]: (iii) Verify Euler's theorem for homogeneous functions of different degrees (simple cases).	U	OR	Domain : Algebra	[12.2]: (i) Define numerical quadrature. Use Simpson's rule, to compute the approximate value of definite integrals without error terms.	K	8

*Cognitive Level

K: Knowledge U: Understanding A: Application

Table of Specification

Model Question Paper Mathematics – Grade XII (HSSC-II)

(Curriculum 2006)

Topics	1 INTRODUCTION TO SYMBOLIC PACKAGE: MAPLE	FUNCTION	3 DIFFERENTIA TION	4 HIGHER ORDER DERIVATIVES AND APPLICATIONS	DIFFERENTIATION OF VECTOR FUNCTIONS		7 PLANE ANALYTIC GEOMETRY - STRAIGHT LINE	8 CONICS – I	9 CONIC S – II	10 DIFFERENTI AL EQUATIONS	11 PARTIAL DIFFERENTI ATION	12 INTRODUCTIO N TO NUMERICAL METHODS	of each	Percentag e of Cognitive Level
Knowledge	1i(1)		1v(1)	2v/s(4) 3/f(8)	1vii(1)		1xi(1)	1xiv(1) 2x/s(4)	2vi/s(4)	1xvii(1) 2iv/f(4) 5/s(8)	2viii/f(4) 2x/f(4)	6/s(8)	54	30%
Comprehensio n	2i/f(4)	1ii(1) 1iii(1) 2iii/s(4) 2iv/s(4)	1iv(1) 2vii/f(4) 2viii/s(4)	1vi(1) 2xi/f(4)	2ix/s(4)	1ix(1) 2ixf/(4) 2xi/s(4) 5/f(8)	1xii(1) 2i/s(4) 4/f(8)	1xiii(1) 2vi/f(4)	1xv(1) 2ii/s(4)	1xviii(1)	2iii/f(4) 6/f(8)	1xix(1) 2xii/f(4)	90	50%
Application					1viii(1) 2vii/s(4) 3/s(8)	1x(1) 2ii/f(4)		4/s(8)	1xvi(1)	2xii/s(4)		1xx(1) 2v/f(4)	36	20%
Total marks	5	10	10	17	18	22	14	18	10	18	20	18	180	100%

Key:

- > 1, 2, 3 etc. stands for question numbers
- i, ii, iii etc. stands for part of question numbers
- (1), (2), (3) etc. stands for marks of question papers
- Question Number (part/ first choice) marks
 Question Number (part/ second choice) marks
 example: Q2 (i / f) 4
 example: Q2 (i / s) 4

Note:

- 1 This TOS does not reflect policy, but it is particular to this model question paper.
- 2 Proportionate / equitable representation of the content areas may be ensured.
- 3 The percentage of cognitive level is 20%, 50%, and 30% for knowledge, understanding, and application, respectively with ± 5% variation.
- 4 While selecting alternative questions for SRQs and ERQs, it must be kept in mind that:
 - Difficulty levels of both questions should also be same
 - SLOs of both the alternative questions must be different